

Developing Michigan's Brewing Supply Chain

INDEPENDENI ★ BARLEY & MALT ★

Bringing Barley Back

•We have been growing barley in MI since 2018 •We are pilot malting our own barley •We have Tepee in the ground in MI and OH •We will be collaborating with regional brewers for brewing with our malts starting this summer

·We are planting European spring barley varieties in MI and Ontario this spring

Bringing Back Commercial-Scale Malting

What Makes Us Independent Great Lakes marine transport Site in Litchfield, MI - small town MI Low-cost, low-carbon energy

months on our 64,600 tons per year facility

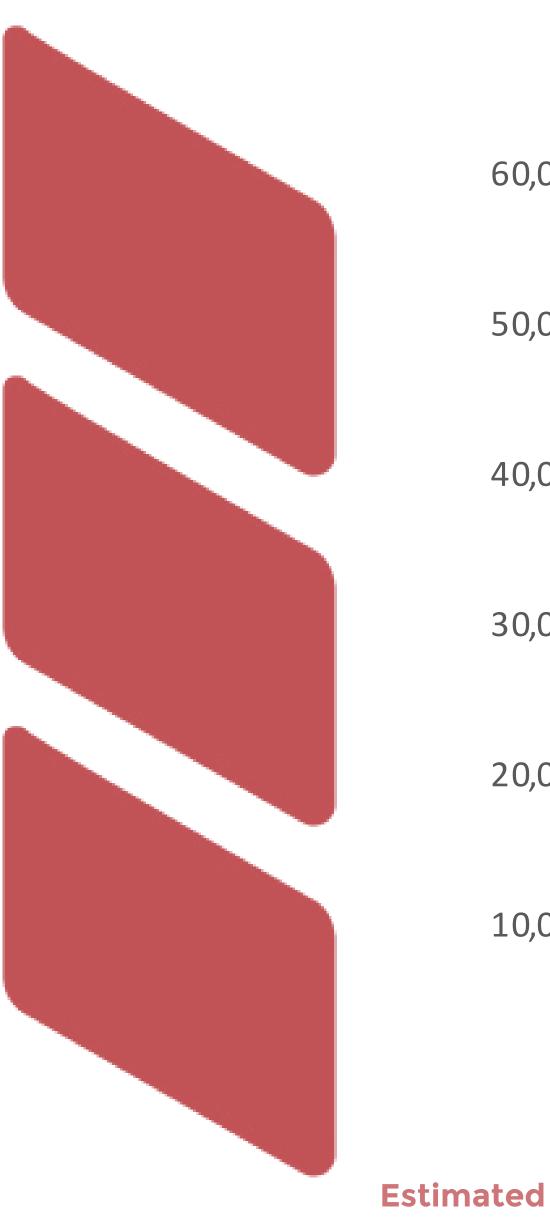
in 2020

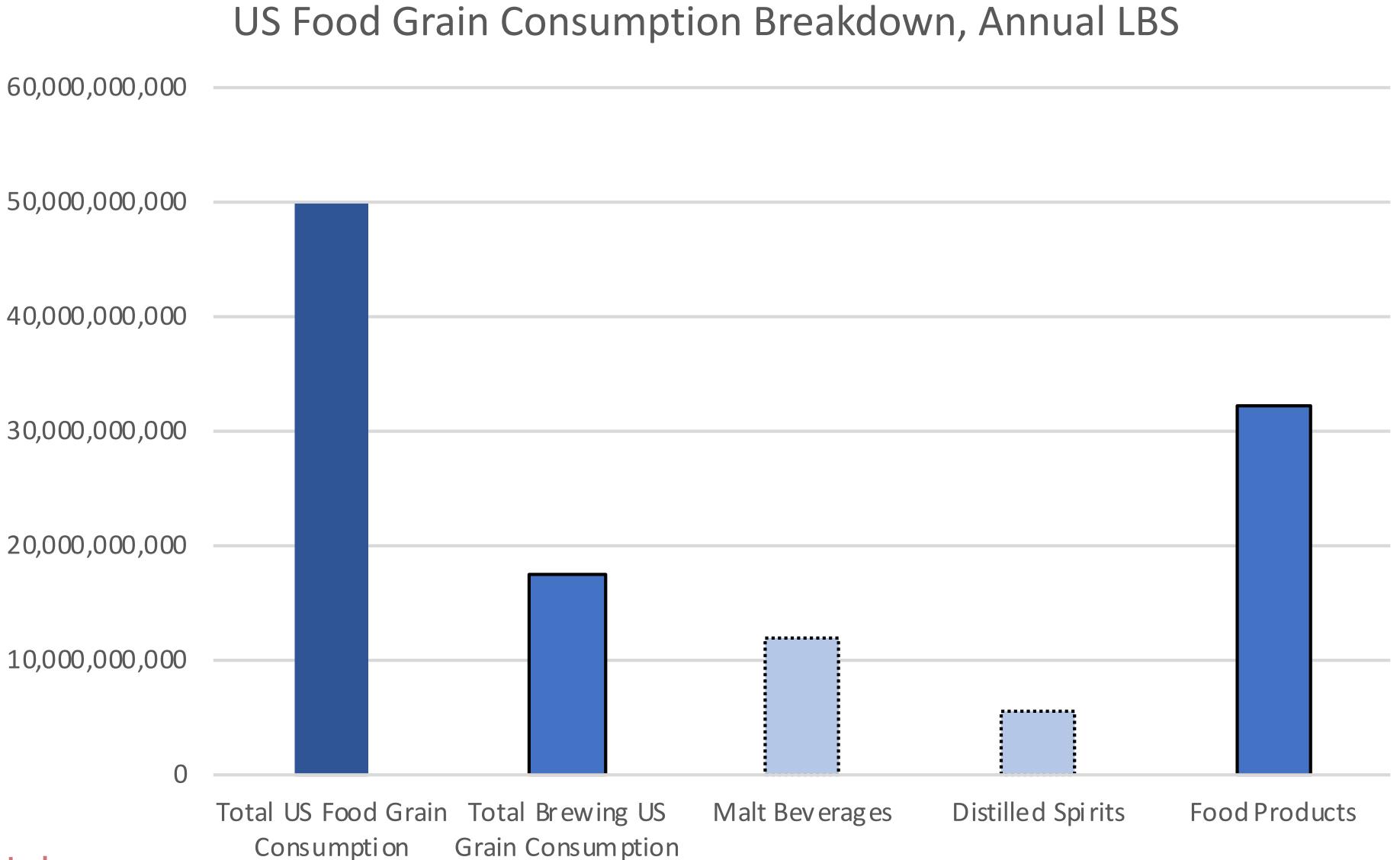
- Raw material from our strategic partner, The Andersons
- Water from the headwaters of five major Great Lakes rivers Strategic partnerships for technology and construction
- •We are completing permitting and finance over the next couple
- Join us at upcoming Malt Mashups, field days, and groundbreaking

Vince Coonce **IB&M Director of Malting**

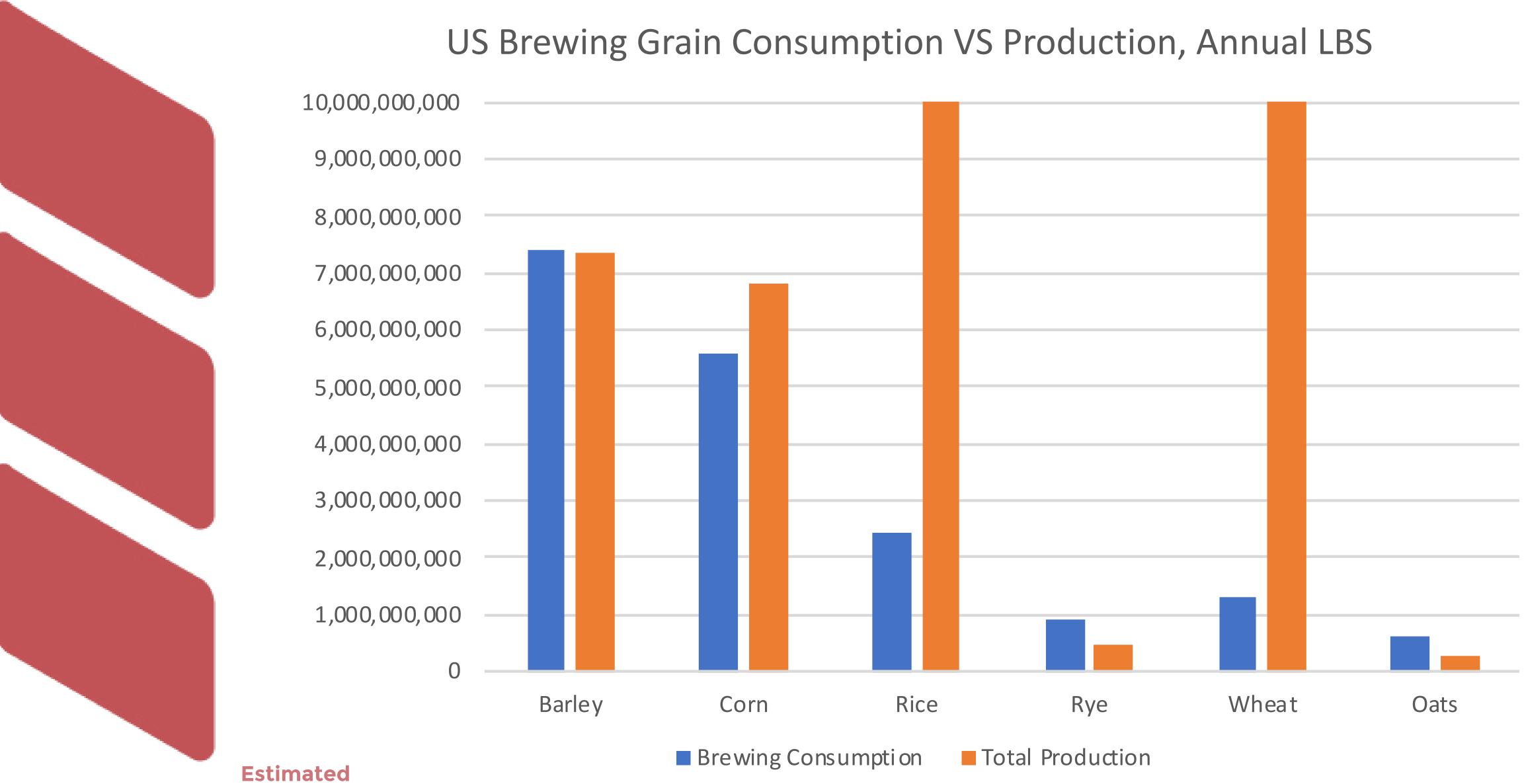
Previously Director of R&D and Chilton Plant Manager at Briess Cargill, Great Western, Ladish Malt, and MillerCoors

Over 30 years of technical and management experience in malting and brewing, engineering, production management, research and development


IB&M Responsibilities

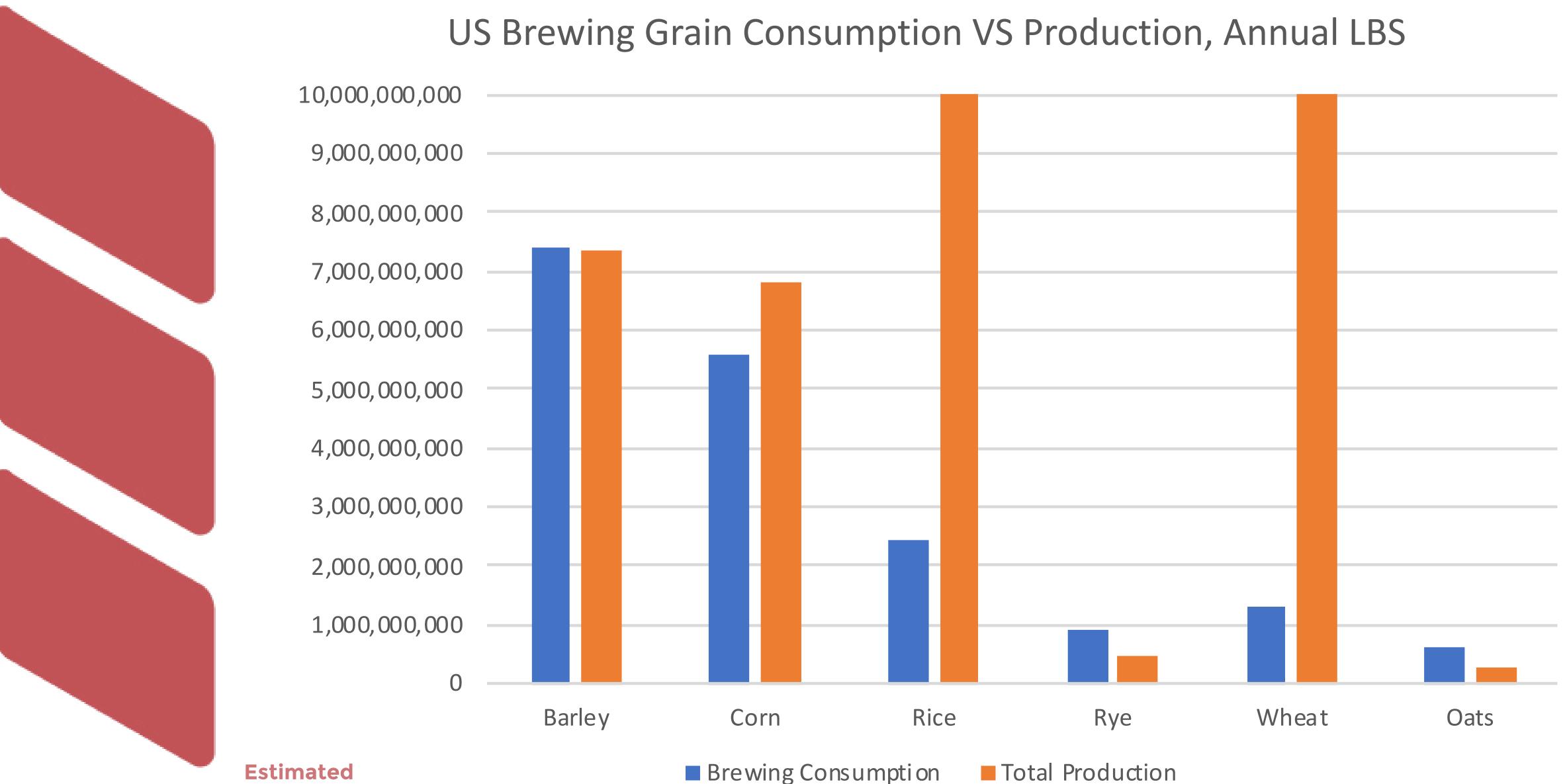

- Product R&D and quality
- Plant operations
- Varietal selection and breeding
- Custom crafted products
- Analytics

Plant design including malting, roasting, flaking, and packaging


Brewing Grains Significant in Food Demand

Brewing Usage by Grain Breakdown

Corn and Rice in Beer?



An example of how low Extract indirectly effects beer quality

Brewed with no Corn Syrup.

Brewing Usage by Grain Breakdown

Potential Brewing Grain Market

	US Nation	IB&M Demand	MI Acres	2018 MI Planted Acres
Barley	7,412,720,000	109,000,000	28,385	5,000
Corn	5,570,030,345	4,000,000	461	1,940,000
Rice	2,430,400,000			
Rye	917,238,621	8,000,000	5,714	Not Published
Wheat	1,287,637,241	16,000,000	3,509	510,000
Oats	607,600,000	4,000,000	1,984	75,000
	Total Po	40,053	2,525,000	

Estimated

Michigan Potential

Premiums are Paid for Brewing Quality Grains

Brewing Market Considerations

Quality/Price are primary
"Locally Produced" must also meet quality
Opportunity to exceed current quality standards
Highest quality product = super premium
Unique, local, branding (terroir)

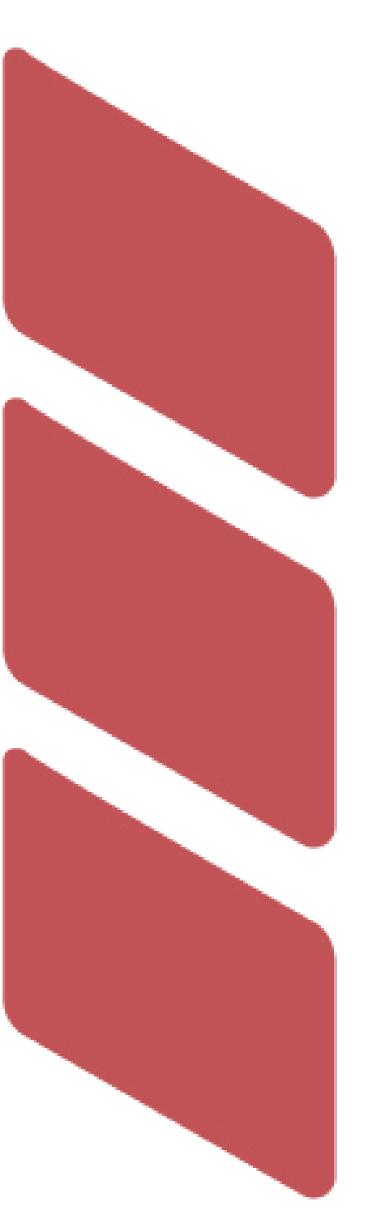
MI Brewing Grain Agronomics

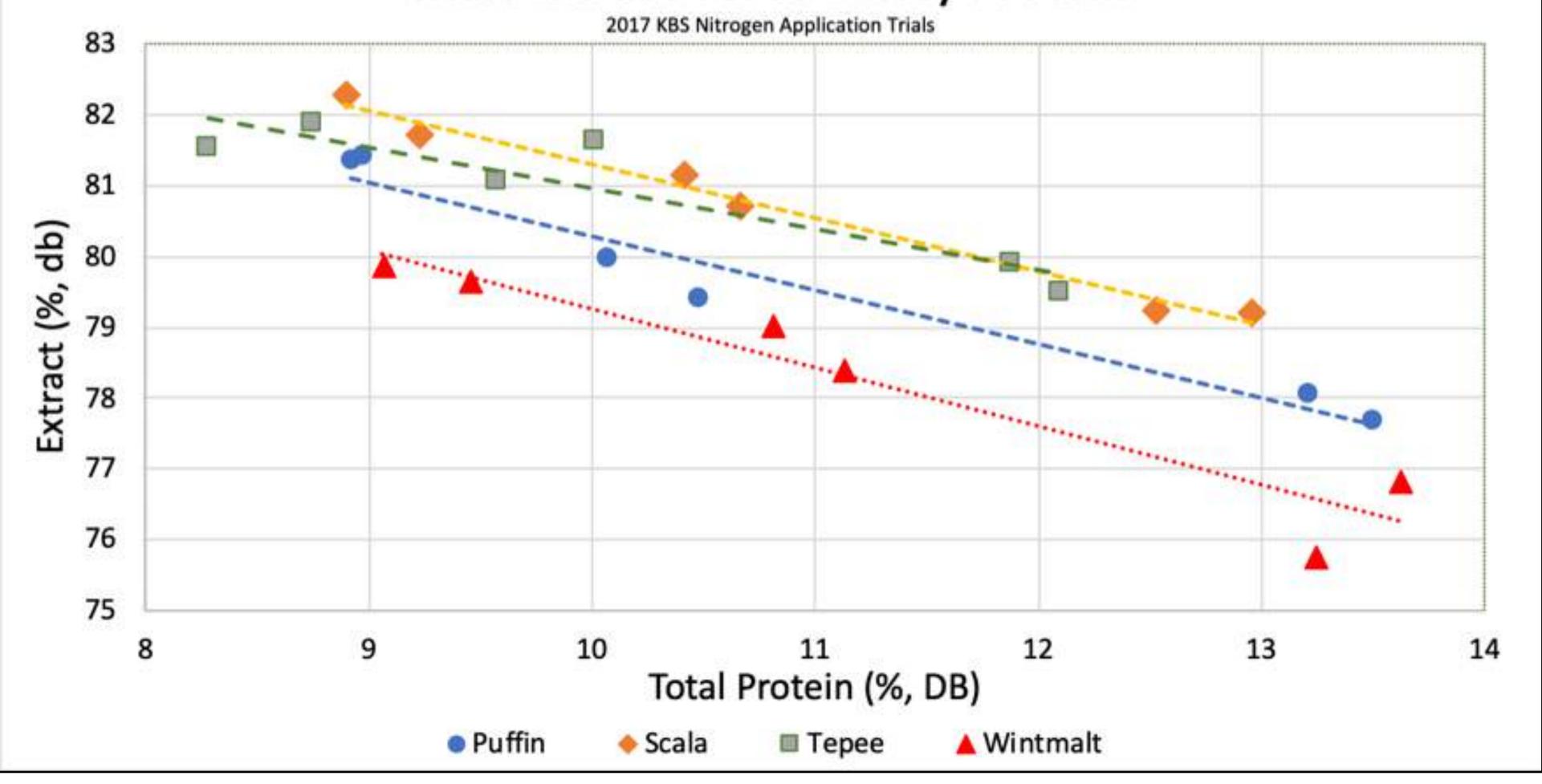
MI climate is NOT ideal - relative short growing season

·Wet weather near flowering and harvest - mycotoxins, staining, pre-harvest sprout

• Harsh and erratic winters - winter kill in winter crops

Select only from grain varieties proven successful in MI


Important Brewing Grain Quality Targets Protein Lower Protein is higher quality Easily measured on raw grain First step in brewing varietal acceptance


• Plump Higher plump is higher quality Easily measured on raw grain First step in brewing varietal acceptance

Use Protein and Plump for Initial Screening

Important Brewing Metric: Protein

Grain variety selection AND optimized ag practices critical

Lower Protein = Higher Quality Variety is Super Important

The Farmer has Control of Quality

Reporting Protein Measurements

Brewing Industry: total Protein dry-basis

• Food grain Industry: total Protein as-is Includes standard moisture correction

•NIR

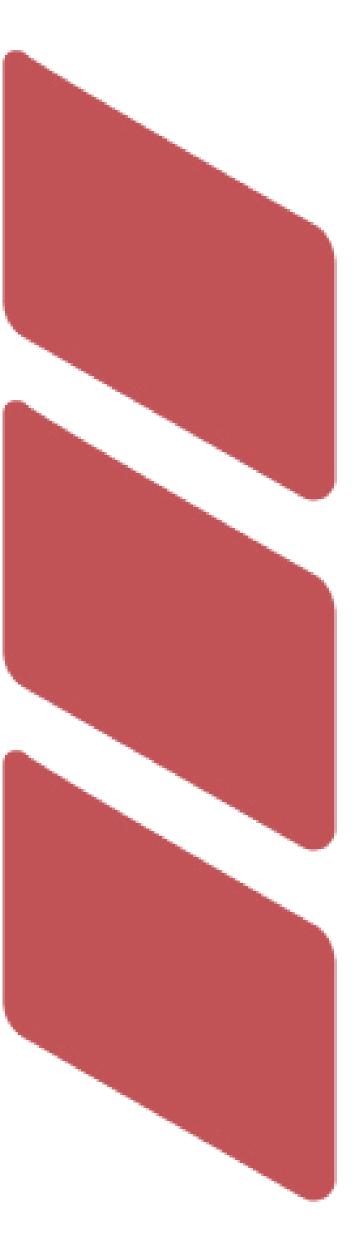
10% Protein db = 8.8% Protein as-is corrected to 12% moisture

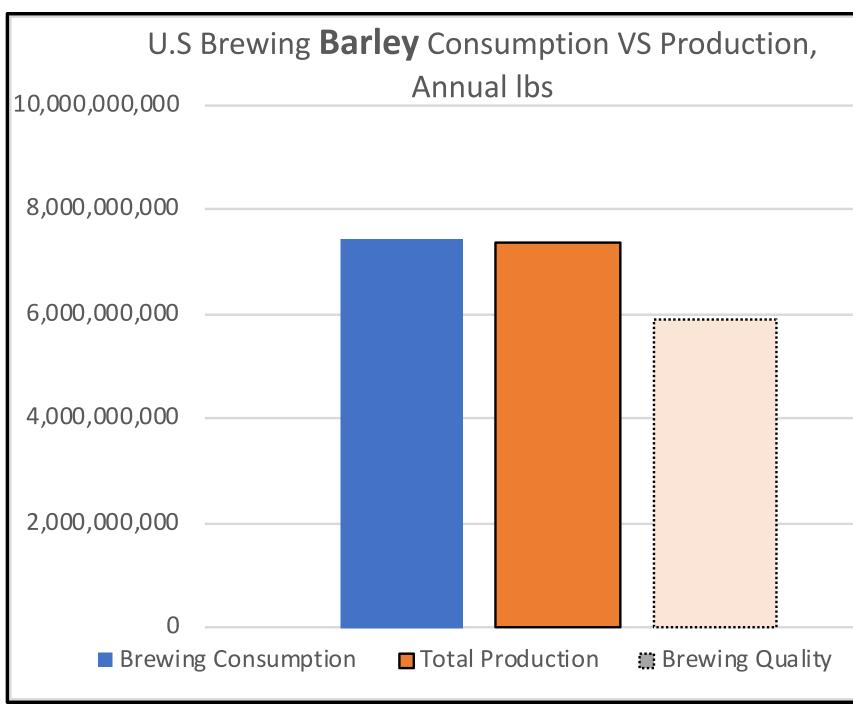
It is critical to define protein % basis in publications

Include measurement basis in reporting Protein

Quality Targets

MALT Quality Targets • Plump • Extract


- Friability
- Diastatic Power
- Free Amino Nitrogen
- ·B-Glucan
- Turbidity
- Viscosity
- Product Sensory Characteristics


ADJUNCT Quality Targets

- Cereal Extract
- Spirit Yield Potential
- Millability
- Product Sensory Characteristics

Brewing quality acceptability is < 80% · Acceptability improvement choosing best agronomic and quality performance and optimal farming practices

What to do with unacceptable quality barley? • Develop alternative outlet for unacceptable quality barley

MI Barley Agronomics and Barley Quality

Dean Baas, James DeDecker, Joshua Dykstra, Christian Kapp, Martin Nagelkirk, Brook Wilke With support from: MSUE AABI, MSU Project GREEEN, WMBT, AMBA, Michigan Brewer's Guild & Bell's Brewery

Trials featuring winter malting barley varieties and management practices were initiated at Michigan State University in 2016, both at the W.K. Kellogg Biological Station (KBS) in SW Michigan and on farms in the Saginaw Valley region. Objectives include optimizing yield while also meeting quality parameters for malting. Winter barley has produced high yields of malting quality barley at both locations over 3 years. This report summarizes the data and observations made from these trials through January 2019.

Barley is part of Michigan's agricultural history. Production peaked at just over 300,000 acres harvest in 1919 and again in 1932.

Barley is suited to Michigan's climate, but winter barley is less winter hardy than other common cereal grains grown in the state, (e.g. wheat, rye). To obtain malting quality, it is imortant to implement specif ic management practices

4. Plant winter barley as soon as possible after the

Hessian Fly Free date to optimize yields and

. Multiple herbicides are labelled for fall and

tor at time of spring herbicide application

6. Barley should be harvested ASAP after grain

increase probability of winter survival. Barley

can be planted through October in southern MI

spring application to control weeds. If lodging

is a concern, consider utilizing a growth regula-

reaches maturity. Drying grain is possible with

low temperature (<100°F) systems. Barley

should be stored at 13.5% moisture or less

Figure 1. The 2018 winter barley management trials at KBS

Winter Barley Management Guidelines

- Seeds should be planted 1" deep at 1.0-1.4 million seeds per acre. Deep planting >1.25" can result in poor emergence.
- Nitrogen fertilizer should be limited to 75 lbs N/A at spring green-up, to limit grain protein to 12% or less. Split applications of nitrogen are not recommended as late applied nitrogen can also increase grain protein content
- Fungicides should be used to control diseases as needed. In particular, fungicide at flowering is recommended to protect against Fusarium infection (DON contamination), but is not a guarantee

MICHIGAN STATE

Michigan State Universit

Extension AgBioResearch MICHIGAN STATE W.K. Kellogg Biological Station

Sincerely,

- MSU published
- Multiple years
- 2-row spring/winter varieties
- 4 different MI nurseries
- Yield
- Pre-harvest sprout
- Malting quality data

Cornell University College of Agriculture and Life Sciences

Plant Breeding & Genetics Section School of Integrative Plant Sciences 240 Emerson Hall, Ithaca, N.Y. 14853-1902

Telephone: (607) 255-1665 Fax (Dept.): (607) 255-6683 E-Mail: mes12@cornell.edu Web Page: http://smallgrains.cals.cornell.edu

2016 Small Grains Performance Trials for New York

Enclosed are the results of our 2016 small grains regional trials and the cumulative summaries over years. Because the rankings of the varieties and lines often change from year to year, only the multiple year summaries should be considered to be useful indicators of varietal performance in this region. Reproduction of any table in this report must include the entire table unless we approve the editing. The information herein is provided with the understanding that no discrimination is intended and no endorsement by Cornell University or its employees is implied. Your comments and suggestions concerning this report are welcome. If you would like additional information or do not wish to receive this report in the future, please contact us. Summaries and information about the Cornell Small Grains Breeding & Genetics Project are maintained on our small grains web page: http://smallgrains.cals.cornell.edu

We have continued to develop and test selections from our molecular marker-assisted breeding program in our soft winter wheat breeding program. Our most recent varieties are Medina (soft white), Otsego (soft red), and Erie (soft red). These selections have improved resistance to preharvest sprouting and fusarium head blight combined with excellent agronomic performance. Otsego and Erie are soft red winter wheat varieties released in collaboration with Ohio State University that have excellent grain yield and disease resistance to powdery mildew, leaf spot, glume blotch, leaf rust, wheat spindle streak mosaic virus, wheat soil borne mosaic virus, and moderate resistance to fusarium head blight (scab). In collaboration with the University of Illinois, we have also released a high-yielding spring oat variety named Corral.

I wish to recognize the contributions of Research Support Specialist, David Benscher, Technical Assistant, James Tanaka, Field Assistants John Shiffer, Amy Fox, Jesse Chavez and Extension Support Specialist Judy Singer and thank them for their dedication.

Mark & Soull

Mark E. Sorrells Professor of Plant Breeding & Genetics

- Cornell published
- Multiple years
- 2-row spring/winter varieties
- Yield
- Winter survival %
- Pre-Harvest Sprout Score
- Fusarium Resistance Index
- Malting quality data

Ag data vast but # varieties studied limited

Ag Brewing Quality Top Performers

Spring Barley Top Performers

	Malt Quality	Ag Performance
Josie	3	7
Fantex	4	5
Tinka	4	1
Odyssey	8	17
Beckie	10	6
Genie	15	2

Μ	S	

	Malt Quality	Ag Performance
Lyberac	1	8
Flavia	2	6
Puffin	4	10
Wintmalt	6	9
Thoroughbred	7	2
Hirondella	8	3

Winter vs Spring 2-Row Comparison

	BU WT	Yield	RVA	Plump	Extract	Protein	S/T	DP	æ-Amyl	ß-Glucan	FAN
Lyberac	50	135	147	88.1	78.6	11.53005	36.6	181	45.9	49	141
Flavia	49	151	142	95.2	78.3	11.53846	35.1	145	37.8	114	116
Tinka	47.1	51.7	163	98.4	82	10.8	37.9	108	50.6	77	181

U Top Winter Performers

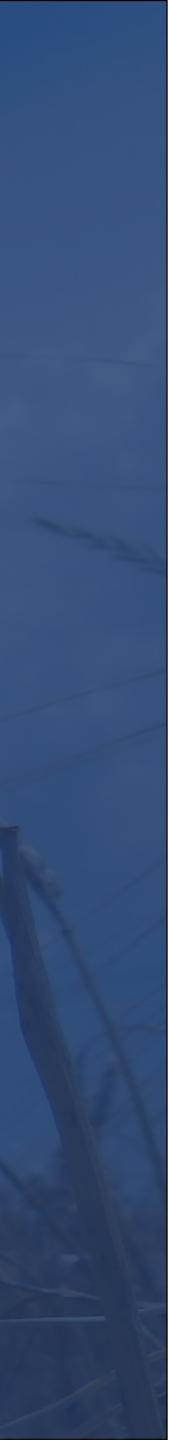
Cornell Data

	Malt Quality	Ag Performance
DH131738	2	6
Doneau	3	9
Calypso	3	1
Flavia	5	10
KWS Scala	6	10
SY Tepee	7	8

Malt Quality Fingerprint

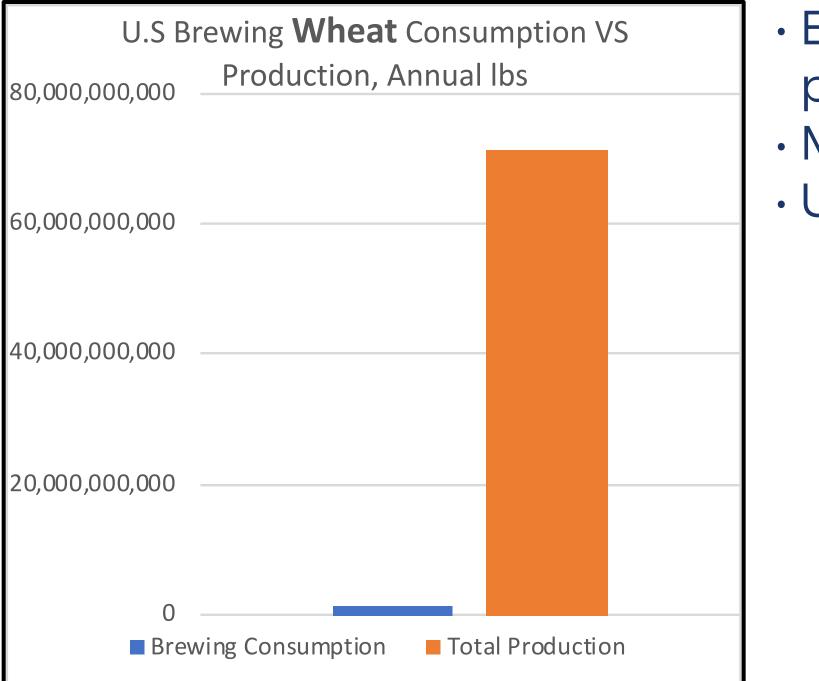
Variety	Plump	Friability	Ext	DP	ß-Glucan	FAN	
2ND28065	93.1	84.4	81.2	122	115	251	Me
2ND33710	83.7	78.8	79.5	146	86	252	
2ND33757	95.3	72	80.1	110	321	187	ŀ
2ND33760	95.5	84.2	81.7	91	205	196	
2ND33821	93.2	78.9	81	86	255	191	
Synergy	71.6	76.4	79.8	137	196	209	
Acorn	76.8	76.3	80.2	135	219	239	
Bettina	96.8	79.9	81	147	76	232	
Conlon	96.9	86.7	81.7	100	121	202	
Esma	77.3	82.6	81.1	88	143	189	
Explorer	98.7	91.6	81.4	114	40	227	Sou
Beckie	95.2	91.7	80.7	105	19	222	rce: 2(
Fantex	98.9	85.3	82.4	101	135	196	2017 MSU
Josie	96.9	85.6	81.3	115	153	213	S
Tinka	98.4	91.4	82	108	77	181	pring Ba
Genie	95.9	80.1	81.5	107	95	219	rley
Odyssey	96.4	88	81	126	26	247	Trials
Beer Style	e Plum	p Friabilit	zy Ext	DP	ß-Glucan	FAN	
Pilsner							
Domestic La	ger						

Low Medium High


Continuing MI Barley Research

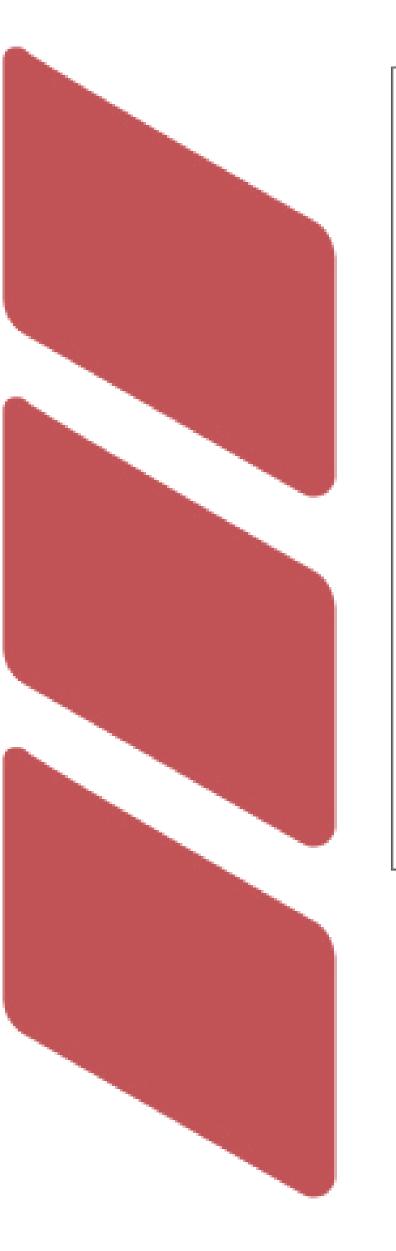
Role of Planting Date and Seeding Rate in Optimizing Winter Survival, Yield, and Quality of Malting Barley: *Maninder Singh*

Optimizing Fungicide Inputs for Disease Management in Barley and Hop: Dr. Martin Chilvers, Tim Miles

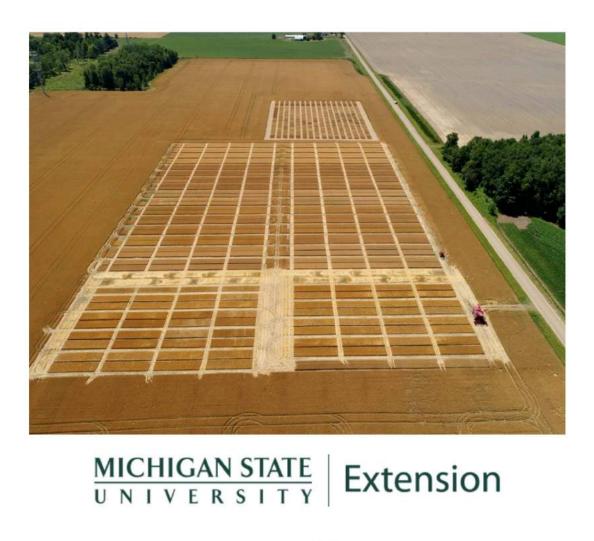

Investigating Winter Hardiness to Advance Winter Malting Barley as Climate Adaptation Strategy in MI: Dr. James Dedecker

> **Recommended Further Work** Improve Extract in Winter varieties and Yield in Spring varieties

- Brewing not mentioned under uses
- NA most red wheat malt from CAN Hard Red Spring Wheat
- Germany malts produced from Soft Winter Wheats
- Soft Winter Wheats (red and white) produce best malt qualities

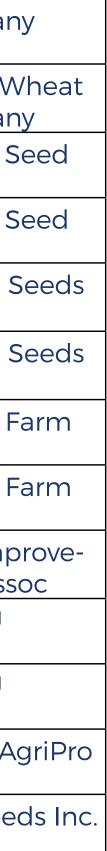

Brewer's wheat used in beer production and distilled products

- Most US what used in baking (targeting high Protein)
 Use in brewing is minute vs use in food
 - Brewing quality targets well established globally Little US R&D for brewing qualities


Class	2018 Prod (Bushels)	Location Produced	Uses
Hard Red Winter	661 million	Great Plains (TX to MT)	Bread Fl
Hard Red Spring	583 million	Northern Plains (ND, MT, MN, SD)	High Pro Blendir
Soft Red Winter	292 million	Eastern States	Cakes Cookie Cracke
White	267 million	WA, OR, ID, MI, NY	Flour for no Cracke Cereal
Durum	73 million	ND, MT	Pasta

MI Wheat Variety Ag Performance Available

2018 Michigan State Wheat Performance Trials


- Over 100 different varieties
- 6 different nurseries
- · 2-year, 3-year, 4-year avg Yield performance
- Test Weight
- Fusarium Resistance (index)
- Baking quality data

- Top 20 Yield performance of the second second
- Median to superior
- Median to superio

rmance
r Test Weight
r Fusarium Resistance

Entry	Variety Name	Color	Compar
6	AgriMAXX 485	Red	AgriMAXX V Compar
31	Dyna-Gro 9362W	White	Dyna-Gro S
37	Dyna-Gro WX17775	Red	Dyna-Gro S
43	HS EX 18R	Red	Harrington S Inc.
45	HS EX 20W	White	Harrington S Inc.
47	ISF 718	Red	Irrer Seed F
49	L11639	Red	Irrer Seed F
59	Kokosing	Red	MI Corp Imp ment Ass
81	MI14R0011	Red	MSU
85	MI14W0190	White	MSU
102	SY 912	White	Syngenta - A
107	W 304	Red	Wellman See

Will Any Top Ag Performers Produce High Quality Wheat Malt?

Pilot Malting

Sample	Sample ID	Yield
1	HS EX 18R	84
2	MI14W0190	84
3	AgriMAXX 485	79
4	SY 912	82
5	ISF 718	81
6	MI14R0011	84
7	L11639	84
8	Kokosing	86
9	HS EX 20W	81
10	Dyna-Gro WX17775	83
11	W 304	83
12	Dyna-Gro 9362W	84

%

rield

		ALL		
	Sample	Sample ID	48-HR	72-HR
6	1	HS EX 18R	94	97
3	2	MI14W0190	98	99
	3	AgriMAXX 485	98	99
3	4	SY 912	97	100
N.Y.S.	5	ISF 718	98	100
2	6	MI14R0011	98	100
1	7	L11639		98
T NY	8	Kokosing	94	100
A N	9	HS EX 20W	99	99
Po N 10	10	Dyna-Gro WX17775	94	94
	11	W 304	98	100
1	12	Dyna-Gro 9362W	98	99

Pilot Malting

Michigan State University July 5, 2019 Company: Date:

LAB ID	Description	Moisture	Friability	PUG	WUG	FEDB	CEDB	F-C Diff	Color	β-glucan	Viscosity	Soluble Protein	Total Protein	S/T	FAN	DP	α-amylase	Filtration	Visual Clarity	A(700)	PH	Plump	>7/64	>6/64	>5/64	<5/64	T We
9 <u></u>		÷	8	ક	*	*	*	*	°SRM	mg/L	cps	8	÷	*	mg/L	°L	D.U.	Time					*	ş	*	8	1
ML-19-1539	# 71369	5.9	96.7	0.0	0.0	81.0	79.1	1.9	2.62	74	1.60	5.37	14.5	37	127	147	46.7	normal	clear	0.009	6.16	90.9	46.6	44.3	8.6	0.5	4
ML-19-1540	# 8SING	5.7	86.5	0.0	0.0	81.3	79.3	2.0	2.86	75	1.62	5.56	14.6	38.1	126	210	49.2	normal	clear	0.013	6.18	98.4	79.5	18.9	1.4	0.2	4
ML-19-1543	# 11304	5.6	96.3	0.0	0.0	81.8	80.7	1.1	3.25	73	1.47	5.77	12.8	45.1	158	153	63.4	normal	clear	0.018	6.18	88.4	45.0	43.4	10.5	1.1	4
ML-19-1544	# 12362W	6.0	90.6	0.2	0.1	83.4	81.8	1.6	2.76	73	1.62	5.19	13.2	39.3	130	142	48.9	normal	clear	0.016	6.29	88.6	44.9	43.7	10.7	0.7	4
ML-19-1545	# 118R	6.9	64.3	2.3	1.1	80.9	79.8	1.1	3.58	72	1.51	6.11	13.0	47	143	178	54.6	normal	clear	0.017	6.19	86.7	37.6	49.1	11.9	1.4	4
ML-19-1546	# 20190	6.8	64.8	1.4	0.7	80.3	78.1	2.2	3.42	74	1.51	6.29	14.5	43.4	148	239	62.1	normal	clear	0.015	6.24	91	59.5	31.5	7.9	1.1	4
ML-19-1547	# 3485	5.8	58.1	1.8	0.9	79.3	77.2	2.1	3.64	70	1.46	6.03	14.1	42.8	151	176	59.1	normal	clear	0.018	6.14	83.7	33.9	49.8	14.8	1.5	3
ML-19-1548	# 4912	5.8	66.1	2.8	0.7	80.4	79.2	1.2	2.96	74	1.55	5.77	14.3	40.3	143	176	53.9	normal	clear	0.019	6.17	90	42.9	47.1	9.2	0.8	3
ML-19-1549	# 5718	5.3	85.3	0.1	0.1	79.0	74.4	4.6	3.47	73	1.58	5.4	14.5	37.2	120	161	50.1	normal	clear	0.016	6.26	90.5	45.7	44.8	9.0	0.5	4
ML-19-1550	# 60011	5.8	53.4	8.4	2.8	80.0	75.9	4.1	3.15	77	1.80	5.24	13.6	38.5	111	226	45.3	normal	clear	0.014	6.29	92.7	50.1	42.6	7.0	0.4	4
ML-19-1541	# 920₩	5.6	83.3	0.0	0.0	80.0	78.6	1.4	3.11	75	1.55	6.17	13.8	44.7	151	171	63.7	normal	clear	0.013	6.16	86.7	43.2	43.5	12.1	1.2	3
ML-19-1542	# 10775	6.1	88.3	0.0	0.0	80.1	77.5	2.6	3.75	72	1.53	6.32	14.3	44.2	164	167	60.1	normal	clear	0.017	6.19	90.6	50.8	39.8	8.8	0.7	3
			and the second				2.5.5				Concerned and												100 C 100				

Wheat Malt Analysis Results

Fria %	PUG %	WUG %	FEDB %	CEBD %	DIFF %	COLOR SRM	VISC cps	SOL PROT %	Total PROT %	S/T %	FAN mg/L	DP L	Plump	>7/64 %	Test Wt LB/BU	Sample ID
96.7	0.0	0.0	81.0	79.1	1.9	2.62	1.60	5.37	14.5	37	127	147	90.9	46.6	42.3	L11639
86.5	0.0	0.0	81.3	79.3	2.0	2.86	1.62	5.56	14.6	38.1	126	210	98.4	79.5	43.6	Kokosing
96.3	0.0	0.0	81.8	80.7	1.1	3.25	1.47	5.77	12.8	45.1	158	153	88.4	45.0	40.2	W 304
90.6	0.2	0.1	83.4	81.8	1.6	2.76	1.62	5.19	13.2	39.3	130	142	88.6	44.9	43.0	Dyna-Gro 9362
64.3	2.3	1.1	80.9	79.8	1.1	3.58	1.51	6.11	13.0	47	143	178	86.7	37.6	43.2	HS EX 18R
64.8	1.4	0.7	80.3	78.1	2.2	3.42	1.51	6.29	14.5	43.4	148	239	91	59.5	42.1	MI14W0190
58.1	1.8	0.9	79.3	77.2	2.1	3.64	1.46	6.03	14.1	42.8	151	176	83.7	33.9	37.5	AgriMAXX 48
66.1	2.8	0.7	80.4	79.2	1.2	2.96	1.55	5.77	14.3	40.3	143	176	90	42.9	38.7	SY 912
85.3	0.1	0.1	79.0	74.4	4.6	3.47	1.58	5.4	14.5	37.2	120	161	90.5	45.7	41.0	ISF 718
53.4	8.4	2.8	80.0	75.9	4.1	3.15	1.80	5.24	13.6	38.5	111	226	92.7	50.1	42.6	MI14R0011
83.3	0.0	0.0	80.0	78.6	1.4	3.11	1.55	6.17	13.8	44.7	151	171	86.7	43.2	39.6	HS EX 20W
88.3	0.0	0.0	80.1	77.5	2.6	3.75	1.53	6.32	14.3	44.2	164	167	90.6	50.8	39.1	Dyna-Gro WX17775

 No Extracts (FGDB) acceptable for wheat malt • All Proteins high for winter wheat

Extract will increase as wheat protein is reduced

Is There Fertilizer Protocol to **Reduce Protein and Increase Extract?**

Can We Do It Losing Yields?

Wheat Malt Analysis Results

-	-		-											-	<u>.</u>	
Fria %	PUG %	WUG %	FEDB %	CEBD %	DIFF %	COLOR SRM	VISC cps	SOL PROT %	Total PROT %	S/T %	FAN mg/L	DP L	Plump	> 7/64 %	Test Wt LB/BU	Sample ID
96.7	0.0	0.0	81.0	79.1	1.9	2.62	1.60	5.37	14.5	37	127	147	90.9	46.6	42.3	L11639
86.5	0.0	0.0	81.3	79.3	2.0	2.86	1.62	5.56	14.6	38.1	126	210	98.4	79.5	43.6	Kokosing
96.3	0.0	0.0	81.8	80.7	1.1	3.25	1.47	5.77	12.8	45.1	158	153	88.4	45.0	40.2	W 304
90.6	0.2	0.1	83.4	81.8	1.6	2.76	1.62	5.19	13.2	39.3	130	142	88.6	44.9	43.0	Dyna-Gro 9362
64.3	2.3	1.1	80.9	79.8	1.1	3.58	1.51	6.11	13.0	47	143	178	86.7	37.6	43.2	HS EX 18R
64.8	1.4	0.7	80.3	78.1	2.2	3.42	1.51	6.29	14.5	43.4	148	239	91	59.5	42.1	MI14W0190
58.1	1.8	0.9	79.3	77.2	2.1	3.64	1.46	6.03	14.1	42.8	151	176	83.7	33.9	37.5	AgriMAXX 48
66.1	2.8	0.7	80.4	79.2	1.2	2.96	1.55	5.77	14.3	40.3	143	176	90	42.9	38.7	SY 912
85.3	0.1	0.1	79.0	74.4	4.6	3.47	1.58	5.4	14.5	37.2	120	161	90.5	45.7	41.0	ISF 718
53.4	8.4	2.8	80.0	75.9	4.1	3.15	1.80	5.24	13.6	38.5	111	226	92.7	50.1	42.6	MI14R0011
83.3	0.0	0.0	80.0	78.6	1.4	3.11	1.55	6.17	13.8	44.7	151	171	86.7	43.2	39.6	HS EX 20W
88.3	0.0	0.0	80.1	77.5	2.6	3.75	1.53	6.32	14.3	44.2	164	167	90.6	50.8	39.1	Dyna-Gro WX17775

Friability and Viscosity values are exceptional

Kokosing Plumpness is exceptional

exceptional al

What Happens to other Malt Analytical Qualities as Wheat Protein is Reduced?

Continuing MI Brewing Wheat Research

PUG

0.0

0.0

0.0

0.2

2.3

1.4

1.8

2.8

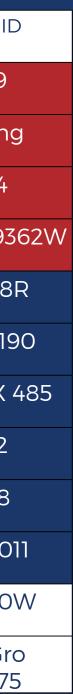
0.1

8.4

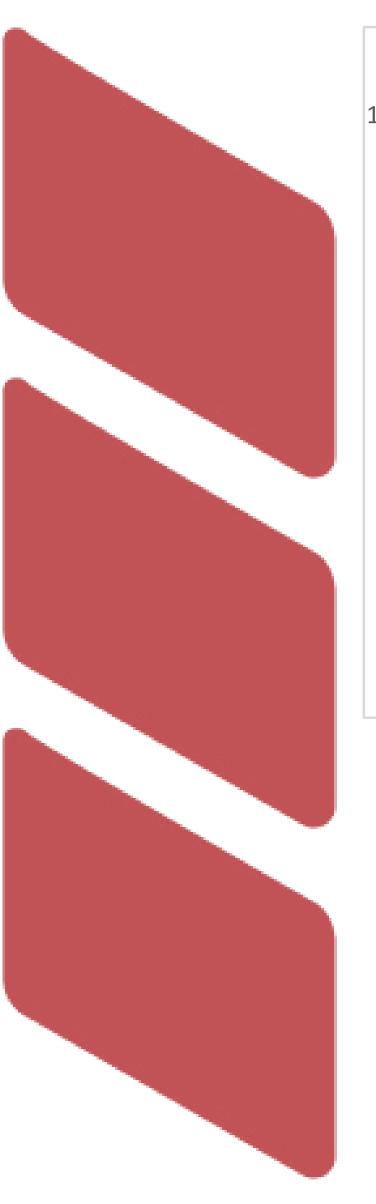
0.0

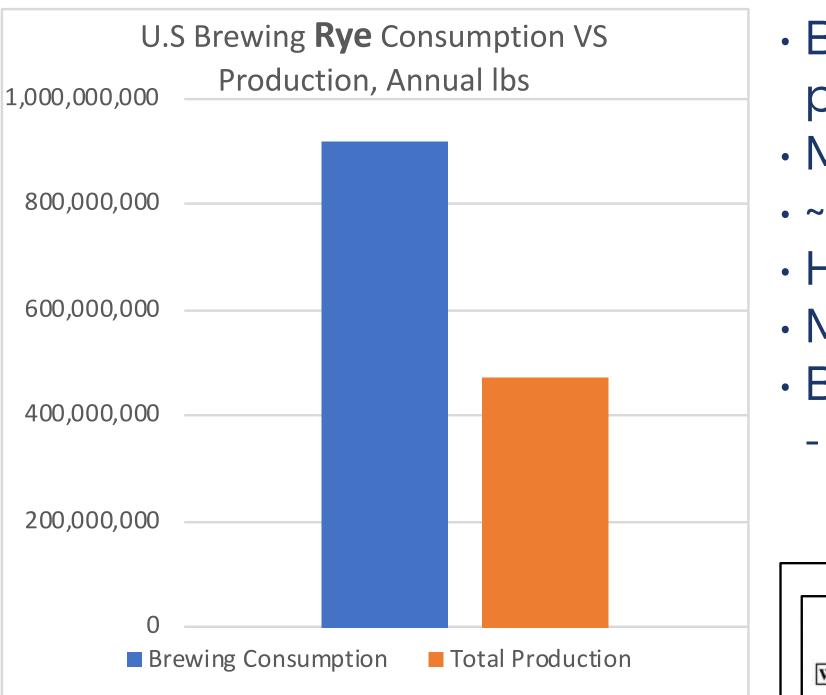
0.0

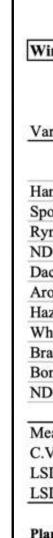
 \cap



Michigan Department of A Rural Development	PROPOSALS February 26,	roposal nding v Dates – May 1 - December 31, 2019	Fria % 96.7 86.5
Principal Investigator : De	nnis Pennington		96.3
Proposal Title: Variety Sel	ection and Agronomy Practices	for Soft Winter Wheat Malting	90.6
Collaborators: Dr. Eric Olso			64.3
Mailing Address: 1066 Bog Email: pennin34@msu.edu	ue Street, East Lansing, MI 4882	24	64.8
Phone #: 269-832-0497			58.1
Type of Project (check one) New FY19 Proposal	Program Area (check all that apply) Beer V	Money and Duration of Project Growing season/year the project	66.1
V	Wine I Spirits I Hard Cider I	started or will start: September 2019 Growing season/year the project will be completed: August 2020	85.3
Continuation of Project funded by other sources	Consumer and Market	Money requested for FY19 only (max \$50,000): \$50,000	53.4
	Research	Total Estimated Cost of Project (if	83.3
	Describe:	multi-year):	88.3


- Select top 4 brewing quality varieties
- Grow test plots to harvest
- Measure Yield
- Pilot malt all samples
- Measure malt qualities


VUG %	FEDB %	DIFF %	COLOR SRM	VISC cps	SOL PROT %	Total PROT %	S/T %	FAN mg/L	DP L	Plump	> 7/6 4 %	Test Wt LB/BU	Sample ID
0.0	81.0	1.9	2.62	1.60	5.37	14.5	37	127	147	90.9	46.6	42.3	L11639
0.C	81.3	2.0	2.86	1.62	5.56	14.6	38.1	126	210	98.4	79.5	43.6	Kokosing
0.C	81.8	1.1	3.25	1.47	5.77	12.8	45.1	158	153	88.4	45.0	40.2	W 304
0.1	83.4	1.6	2.76	1.62	5.19	13.2	39.3	130	142	88.6	44.9	43.0	Dyna-Gro 93
1.1	80.9	1.1	3.58	1.51	6.11	13.0	47	143	178	86.7	37.6	43.2	HS EX 18
0.7	80.3	2.2	3.42	1.51	6.29	14.5	43.4	148	239	91	59.5	42.1	MI14W019
0.9	79.3	2.1	3.64	1.46	6.03	14.1	42.8	151	176	83.7	33.9	37.5	AgriMAXX 4
0.7	80.4	1.2	2.96	1.55	5.77	14.3	40.3	143	176	90	42.9	38.7	SY 912
0.1	79.0	4.6	3.47	1.58	5.4	14.5	37.2	120	161	90.5	45.7	41.0	ISF 718
2.8	80.0	4.1	3.15	1.80	5.24	13.6	38.5	111	226	92.7	50.1	42.6	MI14R00 ⁻
0.0	80.0	1.4	3.11	1.55	6.17	13.8	44.7	151	171	86.7	43.2	39.6	HS EX 20'
0.0	80.1	2.6	3.75	1.53	6.32	14.3	44.2	164	167	90.6	50.8	39.1	Dyna-Gro WX17775


Fertilizer treatments combo of 4 levels nitrogen and 2 levels potassium

 Brewing rye used in production of beer and distilled products - lends a unique spicy flavor character • Most US grain rye is used as animal feed (60%) ~40% is used in rye bread

• Highest rye Protein is not best for baking (low in gluten) Most rye imports from CAN and Germany

 Brassetto and Hazlet produced highest quality rye malt - super plump

		ND	SU Hetting	er Resea	rch Ext	tension	Center				
NDSU Carrington Research Extension Center 2019 Variety Trial Data											
Vinter Rye Carrington											
ariety	Winter Survival	Vigor	Early Plant Height	Jday of	Plant Lodge	Plant Height	1000 KWT	Grain Protein	Test Weight	Grain 2019	Yield 3-yr. Avg.
arrety	%	1-10	inch	incading	0-9	inch	gram	%		bu	
ancock	63.8	2.0	13.3	161.8	3.0	44.2	27.7	12.1	50.6	43.8	54.5
pooner	80.0	5.8	13.8	161.0	3.3	44.1	25.0	12.2	49.3	44.6	50.1
ymin	92.3	7.0	11.9	162.5	3.0	45.8	27.1	10.8	50.3	48.9	66.3
D Dylan	93.8	4.5	12.0	163.0	2.5	44.7	24.0	11.2	49.4	45.5	64.2
acold	87.8	3.5	11.2	165.3	2.0	45.1	27.6	11.0	50.2	43.9	57.2
roostok	92.0	5.0	14.1	157.8	3.5	47.0	22.5	13.4	49.6	32.3	38.3
azlet	94.5	7.3	12.8	163.0	2.0	43.0	28.9	10.8	50.8	53.0	61.3
heeler	85.8	3.0	11.4	166.0	0.5	51.2	30.4	16.1	46.3	9.8	15.3
rasetto	94.3	7.0	12.3	163.3	0.0	34.2	24.8	10.0	47.6	46.4	71.6
ono	91.5	6.0	11.2	163.0	0.8	33.3	24.9	9.6	50.2	60.7	
D Gardner	95.5	8.5	14.4	156.8	3.5	43.9	22.7	12.5	49.7	42.3	
lean	88.3	42.1	12.6	162.1	2.2	43.3	25.9	11.8	49.5	42.8	
.V. (%)	7.0	5.4	10.5	0.5	34.5	5.4	5.0	1.8	0.9	16.0	
SD 0.10	7.5	2.7	1.6	1.0	0.9	2.9	1.6	0.3	0.6	8.2	
SD 0.05	9.0	3.3	1.9	1.2	1.1	3.5	1.9	0.3	0.7	9.9	

Planting Date = September 18; Harvest Date = August 1; Previous Crop = Wheat

Cornell University College of Agriculture and Life Sciences

Plant Breeding & Genetics Section School of Integrative Plant Science 240 Emerson Hall, Ithaca, N.Y. 14853-1902

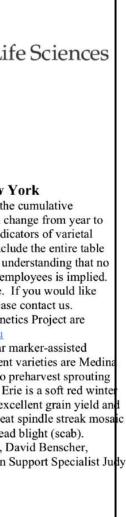
Telephone: (607) 255-1665 Fax (Dept.): (607) 255-6683 E-Mail: mes12@cornell.edu

Web Page: http://smallgrains.cals.cornell.ed

2018 Small Grains Performance Trials for New York

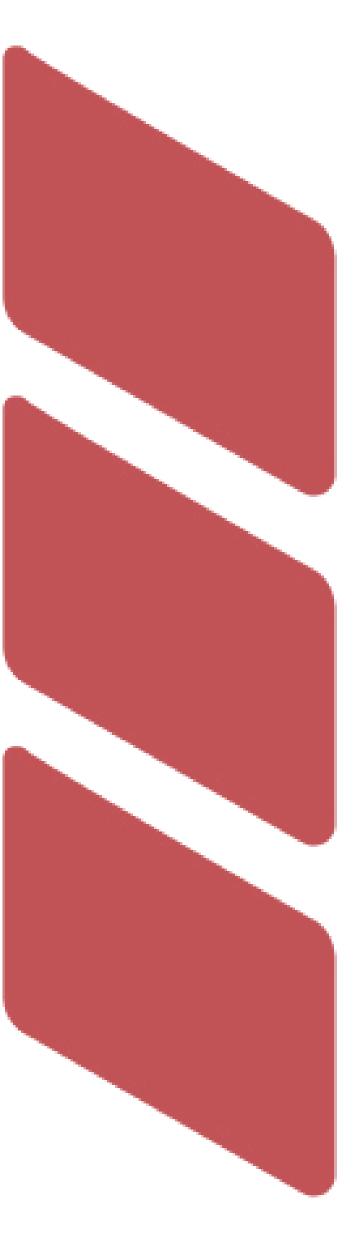
Enclosed are the results of our 2018 small grains regional trials and the cumulative summaries over years. Because the rankings of the varieties and lines often change from year to year, only the multiple year summaries should be considered to be useful indicators of varietal performance in this region. Reproduction of any table in this report must include the entire table unless we approve the editing. The information herein is provided with the understanding that no discrimination is intended and no endorsement by Cornell University or its employees is implied.

Your comments and suggestions concerning this report are welcome. If you would like additional information or do not wish to receive this report in the future, please contact us. Summaries and information about the Cornell Small Grains Breeding & Genetics Project are maintained on our small grains web page: http://smallgrains.cals.cornell.edu


We have continued to develop and test selections from our molecular marker-assisted breeding program in our soft winter wheat breeding program. Our most recent varieties are Medin (soft white) and Erie (soft red). These selections have improved resistance to preharvest sprouting and fusarium head blight combined with excellent agronomic performance. Erie is a soft red winter wheat variety released in collaboration with Ohio State University that has excellent grain yield a disease resistance to powdery mildew, leaf spot, glume blotch, leaf rust, wheat spindle streak mosaic virus, wheat soil borne mosaic virus, and moderate resistance to fusarium head blight (scab).

I wish to recognize the contributions of Research Support Specialist, David Benscher, Technical Assistant, James Tanaka, Field Assistant, Amy Fox and Extension Support Specialist Judy Singer and thank them for their dedication. Sincerely.

Make 5. Soull


Mark E. Sorrells Professor of Plant Breeding & Genetics

Rye is Not Being Produced **Specifically for Brewing Qualities**

Continuing MI Brewing Rye Research

Research Proposal Fiscal 2020 Funding Project Activity Dates – April 1 - Decemb

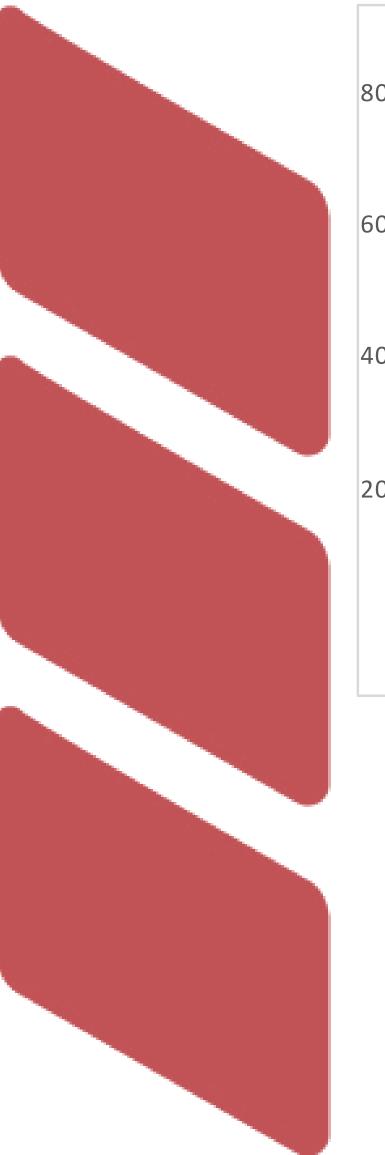
PROPOSALS DUE: October 17, 2019, 3:00 p.m. to MDARD-CraftBev@michigan.gov

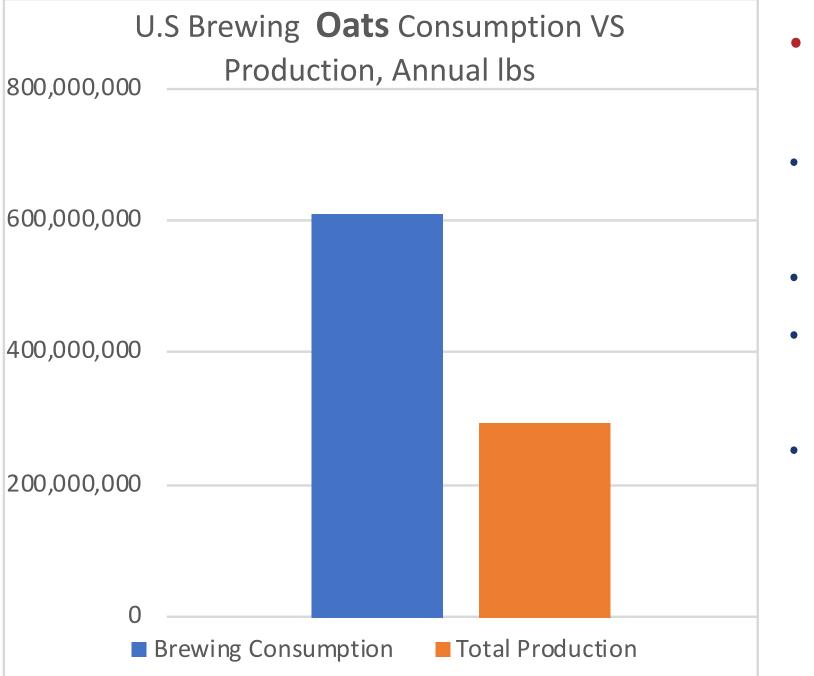
Principal Investigator : Dean Baas

Proposal Title: Evaluation of Cereal Rye Varieties for the Michigan Craft Disti

Collaborators: Martin Nagelkirk, Brook Wilke, James DeDecker, Christian Kapp Ryan Hamilton, Nicole Shriner, Martin Chilvers, Dennis Pennington, Megan Philli

Mailing Address: Kellogg Farm, 10461 N 40th St., Hickory Corners, MI. 49060


Email: baasdean@msu.edu


Phone #: 269-967-9672

Type of Project	Program Area	Money and Duration o
(check one)	(check all that apply)	
New FY20 Proposal	Beer √	Growing season/year th
	Wine 🗆	started or will start: Cli
	Spirits √	enter text.
	Hard Cider D	Growing season/year th will be completed: Click enter text.
Continuation of Project - funded by MCBC FY19 √	Consumer and Market Research	Money requested for FY (max \$50,000): \$29,120
	Other D Describe: Click here to enter text.	Total Estimated Cost of multi-year): \$42,623

1 - December 31, 2020	
m. to i <mark>gan.gov</mark>	
an Craft Distilling Industry	 15 rye varieties Planted 3 MI nurseries
nristian Kapp, Monica Jean, Megan Phillips Goldenberg	Grow test plots to harvest
, MI. 49060	Analyze grains for grain quality, Spirit
	 Yield, and flavor Select samples to pilot distilling analysis and malting analysis
Duration of Project	arraining arranysis
eason/year the project vill start: Click here to	
eason/year the project pleted: Click here to	
uested for FY20 only 00): \$29,120	
ated Cost of Project (if \$42,623	

Oats

Oat Variety Ag Performance

• OATS ARE HOT in craft brewing - unique flavors, mouth-feel softness and silkiness

 Most brewing oats in US are imported - oat flakes and malts from CAN and oat malts from Great Britain
 Imported oat products are expensive

 Revered product is Hulless (naked), very plump, low Protein

Naked varieties bred in the US are too high Protein

Cornell University College of Agriculture and Life Sciences

Plant Breeding & Genetics Section School of Integrative Plant Science 240 Emerson Hall, Ithaca, N.Y. 14853-1902

Telephone: (607) 255-1665 Fax (Dept.): (607) 255-6683 E-Mail: mes12@cornell.edu Web Page: http://smallgrains.cals.cornell.edu

2018 Small Grains Performance Trials for New York

Enclosed are the results of our 2018 small grains regional trials and the cumulative summaries over years. Because the rankings of the varieties and lines often change from year to year, only the multiple year summaries should be considered to be useful indicators of varietal performance in this region. Reproduction of any table in this report must include the entire table unless we approve the editing. The information herein is provided with the understanding that no discrimination is intended and no endorsement by Cornell University or its employees is implied.

Your comments and suggestions concerning this report are welcome. If you would like additional information or do not wish to receive this report in the future, please contact us. Summaries and information about the Cornell Small Grains Breeding & Genetics Project are maintained on our small grains web page: <u>http://smallgrains.cals.cornell.edu</u>

We have continued to develop and test selections from our molecular marker-assisted breeding program in our soft winter wheat breeding program. Our most recent varieties are Medina (soft white) and Erie (soft red). These selections have improved resistance to preharvest sprouting and fusarium head blight combined with excellent agronomic performance. Erie is a soft red winter wheat variety released in collaboration with Ohio State University that has excellent grain yield and disease resistance to powdery mildew, leaf spot, glume blotch, leaf rust, wheat spindle streak mosaic virus, wheat soil borne mosaic virus, and moderate resistance to fusarium head blight (scab).

I wish to recognize the contributions of Research Support Specialist, David Benscher, Technical Assistant, James Tanaka, Field Assistant, Amy Fox and Extension Support Specialist Judy Singer and thank them for their dedication. Sincerely,

Mark & Soull

Mark E. Sorrells Professor of Plant Breeding & Genetics

ORGANIC OAT VARIETY TESTING IN MICHIGAN-2018

Authors: Lauren Voelker, Megan Goldenberg, Christian Kapp, Brook Wilke, & Dean Baas.

Trials featuring organic oats were initiated in 2018 at the W.K. Kellogg Biological Station (KBS) and the Upper Peninsula Research and Extension Center (UPREC), which are research stations of Michigan State University. Objectives included assessing oat varieties for yield and quality parameters related to malting, de-hulling, and human consumption. This report summarizes the data and observations made from the KBS trial through July 24, 2018. Once data is received back from UPREC and the processing and quality tests, another article will be released with further information.

Organic Oat's are the number one produced organic crop in the United Sates. Around 3.6% of all oats grown in the United States are organic.

Figure 1. Harvesting oat plots at the Kellogg Biological Station

Key Agronomic Practices for Organic Oats

- Oats can be the first crops planted in the spring. They will germinate when soil reaches 38 degrees F.
- 2. Planting depth for oats should be approximately 1"
- 3. Planting as early as possible is important. Since oats are a fast growing crop, and can grow during cool weather, they have a better ability to outcompete weeds compared to other spring planted cereal crops.

MICHIGAN STATE

Summary Key to agronomic and brewing performance is variety ·Ultimate MI barley production varieties not yet found available grain quality data Huge untapped opportunities in wheat, rye, and oats Measure Plump and Protein Understand Protein dry-basis and as-is

·Get Grain In the Ground: Plump and Protein analysis missing from •Wheat, rye, and oat variety selection brewing specific cutting-edge

Special Thank You to All of the Expert **Researchers and Financers for Helping** to Improve Agronomic Economies in MI!